Dete Report Submitted:	ENVIRONMENTAL PROT		FORM APPROVED OMB NUMBER 158-R75	
	SECTION I - GENERAL	INFORMATION	For Official Use Only:	
			Date Sent:	
			Date Returned:	
		UTM Grid Coordinates:		
			SIC No.:	
			Source ID:	
Plant, institution, or establishment name:	Ohio Rubber Company	movedor is estato se frame all inter-	u rreger sul ^T . 1	
Plant, institution, or establishment address:	Ben Hur Avenue	Willoughby	Ohio 44094	
	19 671 7746 9 774 67160			
Person to contact regarding this report:	(Street or Box Number) Elden A. Spencer	(City) Title: Vice Pres	(State) (Zi	p) 1500
Person to contact regarding this report:	(Street or Box Number) Elden A. Spencer	(City) Title: Vice Pres	(State) (Zi ident Telephone: 216 942 0	
Person to contact regarding this report: Mailing address: (Street or Box Num	(Street or Box Number) Elden A. Spencer mber) (City)	(City) Title: Vice Presa	(State) (Zi ident Telephone: 216 942 0	
Person to contact regarding this report: Mailing address: (Street or Box Num Approximate number of employees at plant, in	(Street or Box Number) Elden A. Spencer mber) notitution, or establishment location:	(City) Title: Vice Presa	(State) (Zi ident Telephone: 216 942 0 (Zip)	500
Person to contact regarding this report: Mailing address: (Street or Box Num Approximate number of employees at plant, in Elevation of plant, institution, or establishmen	(Street or Box Number) Elden A. Spencer (City) notitution, or establishment location: nt in relationship to mean sea level:	(City) Title: Vice Presa (State) ess than 100 100 or more.	(State) (Zi ident Telephone: 216 942 0 (Zip)	500
Person to contact regarding this report: Mailing address: (Street or Box Num Approximate number of employees at plant, in	(Street or Box Number) Elden A. Spencer mber) (City) notitution, or establishment location: nt in relationship to mean sea level: 1974	(City) Title: Vice Press (State) State) Feet above mean seal	(State) (Zi ident Telephone: 216 942 0 (Zip)	500

Air pollutants of the type indicated in the instructions for the completion of this report, i.e.,

are not emitted at this plant, institution or establishment. Therefore, no other Sections of the report need be completed.

(Signed) ______(Title)

Please return all sections of this report to:

FORM APPROVED OMB NUMBER 158-R75

SECTION II - FUEL COMBUSTION FOR GENERATION OF HEAT, STEAM, AND POWER

Plant, institution, or establishment name:	Ohio Rubber C	Company				7-4
Normal operating schedule for fuel use: 24			50	_ Weeks per year	Hours per year.	
Dates of annually occurring shutdowns of operati	ons: None		·	Additional operating inf	ormation enclosed .	

Source 4,0 Code	Number of Combustion Sourcesb,e (Boilers)	Size of Unit (Input) ** 10°BTU/hr.	Type of Unitde	Installation Dates	Percent Excess Air Used In Combustion (Design)	Power Output Megawattse,
II A	1	100.320	Spreader	1946	45	
11 B	1 .	80.0	Gas-Oil	1968	10	
					• • • • • • • • • • • • • • • • • • •	

a. List a separate code number to represent each source (e.g., II-a, II-b, II-c, etc.), then enter the same code number and the required data on the continuation of this Section on Page 3, and in Sections V and VI.

b. Multiple sources may be grouped if units are similar in size and type, burn the same fuel, or are vented to the same stack.

c. Nameplate data are sufficient (give rated or maximum capacity, whichever is greater).

d. Hand-fired, underfeed, overfeed, traveling-grate or spreader stoker; cyclone furnace; pulverized, wet or dry bottom with or without fly ash reinjection; rotary or gun type oil burner; etc.

⁻e. List separately future equipment and expected date of installation.

f. Power generation only.

FORM APPROVED OMB NUMBER 158-R75

SECTION II - FUEL COMBUSTION FOR GENERATION OF HEAT, STEAM, AND POWER (continued)

	To the state of th		Annual	Consum	ption		Hourly Co	Hourly Consumption					ו יו רער	
Source	Type		Percen	t Distrib	ution by	Season			Percent	Heat	Percent	Percent	Delivered Cost of	Future
Code	of Fuelb	Quantityd	Spring March/ May	Summer June/ Aug.	Fall Sept./ Nov.	Winter Dec./ Febr.	Maximum	Average	Used for Space Heat	Content BTU/Quan.e	Sulfure,f	Ash (Solid Fuel Only) e,f	Fuel \$/Quantity	Uses
IIA	coal	21,000	25.4	20.0	25.3	29.3	(50)-5*	2.6	25	13,210	2.77	6.48		1
									A-100 A-			WOOD WAS AND A STATE OF THE STA		
11B		176,237	26.2	4.0	27.0	42.8	80.800	49.100	25	1,030				
and the second s	oil	40,000	0	100	0	0	563	345		142,000			<u> </u>	<u> </u>
														//
Water State Common of the Comm										The state of the s				$/ \setminus$
Control of the Contro							Co. 100 WARRANTO						/	1

- a. List code numbers corresponding to each source referred to on page 2, (e.g., II-a, II-b, II-c, etc.), then enter required data on this page, and for the same code number sources in Sections V and VI.
- b. Coke, bituminous coal, anthracite coal, lignite; No. 1, 2, 4, 5 and 6 fuel oil; natural gas; LPG; refinery or coke oven gas; residual coke; wood; bark; sludge; etc. (Note: Indicate if two or more fuels are burned in the same boiler and provide all data pertinent to each fuel type.)
- c. Fuel data are to be reported on an "as burned" basis.
- d. Solid fuel, tons; liquid fuel, gallons; gaseous fuel, 1000 cubic feet.
- e. If unknown, please give name and address of fuel supplier.
- f. Sulfur and ash content for each fuel should be a weighted average.
- g. Estimated percent increase or decrease in fuel usage (by fuel type) per year for the five years after the calendar year for which this report is completed. If increase is due to new equipment, please list this equipment separately on page 2 and the expected fuel use on this page.

SECTION III - COMBUSTIBLE SOLID AND LIQUID WASTES DISPOSAL

Plant, inst	itution, or	establishm	nent name:_	Ohio Rubber Co	mpany					
Combustil	ole solid ar	nd liquid w	astes dispos	ed of \square on site,	ite, 🗌 both or					
				to Section IV.)				,	, 400p. 100	
Normal or	ı-site comb	oustion ope	rating sched	dule:Hours pe	r day	Days per	r week	Weeks per ye	arHours	per year.
Seasonal a	nd/or peal	ς operation	period: (Sp	pecify)						an armendad (rename). Of the first production of the second second second second second second second second se
Dates of a	nnually o	ccurring sh	utdowns of	operations:		reterninustaalanneeliste Mortuuritaalaislainnis en kiinesissa el	Ad	ditional operating i	nformation enclosed	
Source Code ²	Waste Material			Installation	Hourly Burning Rate, lbs.		Auxiliary Fuel	Percent Excess		
	Туреь	Amount Per Year	Percent Combust- ible	Method of Disposal	Date	Average	Maximum	Usede	Air Used in Combustion (Design)	Future Disposal
					·					
						.:				
										X

- a. List a separate code number to represent each source (e.g., III-a, III-b, III-c, etc.), then enter required data on this page and for the same code number sources in Section V and VI.
- b. Rubbish, garbage, mixed garbage and rubbish, waste paper, wood chips or sawdust, etc.
- c. Tons, pounds, or gallons/year.
- d. Open burning dump; incinerator, single chamber; etc. (See instructions for examples and use appropriate identification numbers; other non-listed methods, specify.)
- e. Indicate whether auxiliary fuel is used in incinerators and pit burning, and the amount.
- f. Estimated increase or decrease in combustible solid and liquid wastes disposal rate for the five years after the calendar year for which this report is completed. If increase is due to new equipment, please list this equipment separately.

FORM APPROVED OMB NUMBER 158-R75

SECTION IV - PROCESS/OPERATIONS EMISSIONS

Plant, ir	stitution, or esta	ıblishment ı	name:	Ohi	o Rubber	Company						hina da kana kana kana kana kana kana kana									
	operating schedu						2Week	s per year_	Hor	ırs per year.											
Seasonal	and/or peak op	eration peri	od:	none		- 2 - 0 - 12 - 11 - 11 - 11 - 11 - 11 - 11 - 1				0.7											
Dates of	annually occurr	ing shutdov	wns of op	erations:	none		F2-03-		dditional oper	ating informat	ion enclosed [].									
	Processes or		Raw Materials. Used for Processes or Operations					luctss of Pr	ocesses or Ope	rations	Intermittent	TC4	rei In-								
Source	Operations Releasing	eleasing stallation ollutants Went on			Quantity				Qua	ntity	Operation	crea	se or								
Codea	Pollutants to the Atmos-		Went on	Went on	Went on	Went on	Went on	Went on	Went on	Went on		Type	Annual	Hourly Proce	ess Rate, lbs.	Туре	Annual Averages	Hourly Proce	ess Rate, 1bs.	Only: Average	
	phereb,c,d			Averages	Design	Maximum			Design	Maximum	Hours/week b	R	ate								
IVA	#1 & 2 Banbury	····	cmpd	t ton 37,400	12,000	16,000	rubber	ton 37,400	12000	16000	120										
	#3 & 4"		Ruhhol	n tan	}							1	/ !								

a. List a separate code number to represent each source (e.g., IV-a, IV-b, IV-c, etc.) then enter required data on this page and for the same code number sources in Sections V and VI.

"

20.800

5.200

for Reclaiming

Paint 1450 gal

10000

2500

12000

3000

3/4 at.

12.000

3,000

b. Multiple sources may be grouped if similar in size and type.

1940

1940

1943

- c. Sulfuric acid-contact; aluminum smelting-crucible furnace; cement manufacturing-dry process; etc. (See instruction for examples and use appropriate identification numbers; other non-listed processes and operations, specify.)
- d. The pollutants to be covered in this report are listed in the accompanying instructions.

cmpd 20,800

Rubber

cmpd

e. Sulfur burned; pig, foundry returns, or scrap aluminum melted; limestone, cement rock, clay, iron ore used; etc.

10.000

2,500

Heating Rubber & Metal Parts

f. Pounds, tons, gallons, barrels, etc.

IVB Banburu

IVC Scales

Furnace

IVE Spray Booth 1950

Dept 14

IVD

- g. Sulfuric acid produced; aluminum ingots produced; cement produced; etc.
- h. For intermittent processes, indicate average number of hours per week of operation so that estimates of yearly emissions may be obtained.
- j. Estimated percent increase or decrease in process rate on a total plant basis for the five years after the calendar year for which this report is completed. If increase is due to new equipment, please list this equipment separately.

80

80

5

120

1 - 1 / 2

ENVIRONMENTAL PROTECTION AGENCY

AIR POLLUTANT EMISSIONS REPORT SECTION IV - PROCESS/OPERATIONS EMISSIONS

Source Code	Processes or Operati Releasing Pollutants the Atmosphere		Annual Average	Quantity Design	Max.	Intermittent Operation Only; Average Hours/week
IVF	Spray Booth	Adhesive	6500 gal.	1 gal.	1-1/2 gal.	
IVG IVH	Spray Booth	Adhesive	5000 gal.		2-1/2 gal.	
IVA	Spray Booth Spray Booth	Paint Paint	1500 gal. 1500 gal.	.4 gal. .4 gal.	1/2 gal. 1/2 gal.	
IVJ	Spray Booth	Adhesive	5000 gal.	2 gal.	2-1/2 gal.	
IVK	Spray Booth	Vinyl Paint	50 gal.	1 lb.	2 lb.	10
IVL)	Spray Booth	Primer	156 gal.	2 lb.	4 lb.	2-1/2
IVL)	Spray Booth	Adhesive	100 gal.	4 lb.	4 lb.	4
IVM	Spray Booth 1970	Primer	780 gal.	4 lb.	5 lb.	30
IVN	Spray Booth 1970	Cement	780 gal.	4 lb.	5 lb.	30
I V O	0ven 1970	Drying Primer		1 lb.	1 lb.	3 <i>0</i>
IVP	Spray Booth 1970	Primer		2 lb.	1-1/2 lb.	<i>30</i>
IVQ	Spray Booth 1970	Adhesive	•	2 lb.	2-1/2 lb.	30
IVR	Drying Oven 1970	Primer		2 lb.	2-1/2 lb.	30
IVS	Reclaiming Rubber 1946					
	Rubber	2 050 2 000	n - 0 - 1 - n 11	2050	2000	4.6
	Ckay-Limesio	ne 3,050 3,200	Keckaam Kubber	. 3050	3200	168

SECTION V - AIR CLEANING EQUIPMENT

	7F	Installation	Pollutant	Effic	iencye	Inlet Gas	Inlet Gas	Exit Gas
Code _a	Source Type of Air Cleaning Equipment b,c		Removed o, d	Design Percent	Operating Percent	Temperature, °F	Flow Rate, ^f CFM	Pressure, PSI
IIA	Centrifugal Collector	7-1967	fly ash	92		540	61,500	0
IIB	None	9-1968						-
IVA	Fabric Dust Collector	1952	rubber compound			70	4,600	0
IVB	11 11	1950	11			70	25,036	0
IVB	11 11	1941	II.					**************************************
ĹVD	None					· • •		
IVE	None							

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Wet scrubber, electrostatic precipitator, fabric filter, etc. (See instructions for examples and use appropriate identification numbers; other non-listed type, specify.)
- -c. Please list future equipment separately.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give efficiency in terms of pollutant removed.
- f. At actual flow conditions.

Date	Report	Submitted:
------	--------	------------

FORM APPROVED OMB NUMBER 158-R75

SECTION V - AIR CLEANING EQUIPMENT

Plant, institution, or establishment name:

Source Code	Type of Air Cleaning Equipment b,c	T . 11 .:	The New Age	Effic	iency •	Inlet Gas	Inlet Gas	Exit Gas
		Installation Date:	Pollutant Removed c, d	Design Percent	Operating Percent	Temperature, °F	Flow Rate, ¹ CFM	Pressure, PSI
IVF	NONE							
IVG	NONE							
IVH	NONE						·	
IVI	NONE							
IVJ	NONE							
IVK	NONE							
IVL	NONE			,				

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Wet scrubber, electrostatic precipitator, fabric filter, etc. (See instructions for examples and use appropriate identification numbers; other non-listed type, specify
- -c. Please list future equipment separately.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give efficiency in terms of pollutant removed.
- f. At actual flow conditions.

Date	\mathbf{Report}	Submitted:	
------	-------------------	------------	--

FORM APPROVED
OMB NUMBER 158-R75

SECTION V - AIR CLEANING EQUIPMENT

Plant, institution, or establishment name:	•
Trant, institution, or establishment name.	

Source Codea	Tune of Air	Installation	m. II	Effic	iency e	Inlet Gas	Inlet Gas	Exit Gas
	Type of Air Cleaning Equipment b,c	Installation Date	Pollutant Removede,d	Design Percent	Operating Percent	Temperature,	Flow Rate, CFM	Pressure, PSI
I VM	NONE							
IVN	NONE							
IVO	NONE							
IVP	NONE							,
IVQ	NONE			/////				- ···
IVR	NONE						,	
IVS	Fabric Dust Collector	1954	clay limestone			90	750	0

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Wet scrubber, electrostatic precipitator, fabric filter, etc. (See instructions for examples and use appropriate identification numbers; other non-listed type, specify
- c. Please list-future equipment separately.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give efficiency in terms of pollutant removed.
- f. At actual flow conditions.

SECTION VI - STACK AND POLLUTANT EMISSIONS DATA

		ę.	STACK DAT	A	ESTIMATE OF POLLUTANT EMISSIONS					
					Exit Gas Flow Rate, CFMc		To II	Quantity		
Source	Height Above	Inside Diameter	Exit Gas	Exit Gas				Tons Per Year Lbs.		Per Hour
Code ^a	$egin{array}{c c c c} Above & Diameter & Velocity, b \\ Grade & at Top, & ft./sec. & ft. & \hline \end{array}$	Temperature, b	Average	Maximum	Pollutant		Average	Maximum		
11A	79	75"	40	520	61,500				and the second s	
IIB	61	50"	34.6	485	20,000	28,200				
IVA	22	13 sq"	5000	70	4,600					
IVB									All Williams and All States and All	
IVC										
IVD	22	14"		200						
IVD	2 3	24"		400						

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Values should be representative of average flow conditions for hours of operation.
- c. At actual flow conditions.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give stack test data if available (indicate stack sampling method used), otherwise, specify basis used. If unknown, please do not complete these columns.

Date Report Submitted:

ENVIRONMENTAL PROTECTION AGENCY AIR POLLUTANT EMISSIONS REPORT

FORM APPROVED
OMB NUMBER 158-R75

SECTION VI - STACK AND POLLUTANT EMISSIONS DATA

	9.00		STACK DAT	A	ESTIMATE OF POLLUTANT EMISSIONS.					
					Exit Gas Flow			Quantity		
Source Codea	Height Above	Inside Diameter	Exit Gas Velocity,	Exit Gas	Rate,	CFM∘	Pollutanta	Tons Per Year	Lbs. Per Hour	
	Grade ft.	at Top, ft.	ft./sec.	Temperature, b	Average	Maximum	<u>.</u>		Average	Maximun
IVDc	24	14"		200						
IVE	26	34"	2100	70		13,280	Perchloroethyle	ne	126	3/4
IVF	26	34"	2300	70		14,400	Hexane		8	12
IVG	26	24"	1760	75		5,565	11		24	2 4
I VH	31	2 4 "	1000	75		3,000	Perchloroethyle	ne	4	4
IVI	31	24"	1000	75		3,000	M.E.K.		4	4
IVJ	31	3 4	2475	75		15,600	Texane 45% Toluol 10%		16	24

a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.

b. Values should be representative of average flow conditions for hours of operation.

c. At actual flow conditions.

d. The pollutants to be covered in this survey are specified in the accompanying instructions.

e. Give stack test data if available (indicate stack sampling method used), otherwise, specify basis used. If unknown, please do not complete these columns.

FORM APPROVED
OMB NUMBER 158-R75

SECTION VI - STACK AND POLLUTANT EMISSIONS DATA

			STACK DAT	A	ESTIMATE OF POLLUTANT EMISSIONS.						
	77.2.1.	x • 1			Exit Gas Flow Rate, CFM			Quantity			
Source A	Height Above	Inside Diameter	Exit Gas Velocity,b	Exit Gas Temperature, b °F			Pollutant₄	Tons Per Year Lbs. Pe		er Hour	
	Grade ft.	at Top, ft.	ft./sec.		Average	Maximum			Average	Maximum	
IVK	26	24"	2100	75		6524	water		1	2	
IVL	15	34"	1900	75		12000	M.E.K.		3	6	
IVM	11	34"	1900	75		12000	Perchloroethyle	ne	3	3	
IVN	32	34"	950	75		6000	M.E.K.		3	3	
100	35	34"	950	75		6000	Perchloroethyle	ne	3	4	
IVP	29	12"	2000	75		1600	M.E.K. & Perchl	oroethylene	1	1	
IVQ	2 8	34"	950	75		6000	Perchloroethyle	ne			

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Values should be representative of average flow conditions for hours of operation.
- c. At actual flow conditions.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give stack test data if available (indicate stack sampling method used), otherwise, specify basis used. If unknown, please do not complete these columns.

Date Report Submitted:

ENVIRONMENTAL PROTECTION AGENCY AIR POLLUTANT EMISSIONS REPORT

FORM APPROVED
OMB NUMBER 158-R75

SECTION VI - STACK AND POLLUTANT EMISSIONS DATA

			STACK DATA	A	ESTIMATE OF POLLUTANT EMISSIONS.					
	Height Above Grade ft.	Inside	D 1. G		Exit Gas Flow Rate, CFM		-	Quantity		
Source Codea		Diameter	Exit Gas Velocity,b	Exit Gas Temperature, b			Pollutant ⁴	Tons Per Year	Lbs. F	er Hour
		at Top, ft.	ft./sec.		Average	Maximum			Average	Maximum
IVL	15	34"	1900	75		12000	Perchloroethylen	le	3	3
IVR	29	12"	2000	250		1600	Perchloroethyler	ie & M.E.K.	1	1
1 V S 1	14	6"	4000	90		750	Clay-Limestone			
IVS ₂	36	62"	3500	90		71900	Heat-Dust			
						;				
										·

- a. List code numbers corresponding to each emissions source reported in Sections II, III, and IV.
- b. Values should be representative of average flow conditions for hours of operation.
- e. At actual flow conditions.
- d. The pollutants to be covered in this survey are specified in the accompanying instructions.
- e. Give stack test data if available (indicate stack sampling method used), otherwise, specify basis used. If unknown, please do not complete these columns.